Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 19986-20000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368301

RESUMO

In recent years, the growing concern over the presence of toxic aquatic pollutants has prompted intensive research into effective and environmentally friendly remediation methods. Photocatalysis using semiconductor quantum dots (QDs) has developed as a promising technology for pollutant degradation. Among various QD materials, indium phosphide (InP) and its hybrid with zinc sulfide (ZnS) have gained considerable attention due to their unique optical and photocatalytic properties. Herein, InP and InP/ZnS QDs were employed for the removal of dyes (crystal violet, and congo red), polyaromatic hydrocarbons (pyrene, naphthalene, and phenanthrene), and pesticides (deltamethrin) in the presence of visible light. The degradation efficiencies of crystal violet (CV) and congo red (CR) were 74.54% and 88.12% with InP, and 84.53% and 91.78% with InP/ZnS, respectively, within 50 min of reaction. The InP/ZnS showed efficient performance for the removal of polyaromatic hydrocarbons (PAHs). For example, the removal percentage for naphthalene, phenanthrene, and pyrene was 99.8%, 99.6%, and 88.97% after the photocatalytic reaction. However, the removal percentage of InP/ZnS for pesticide deltamethrin was 90.2% after 90 min light irradiation. Additionally, advanced characterization techniques including UV-visible spectrophotometer (UV-Vis), photoluminescence (PL), X-ray diffractometer (XRD), energy-dispersive spectrometer (EDS) elemental mapping, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were used to analyze the crystal structure, morphology, and purity of the fabricated materials in detail. The particle size results obtained from TEM are in the range of 2.28-4.60 nm. Both materials (InP and InP/ZnS) exhibited a spherical morphology, displaying distinct lattice fringes. XRD results of InP depicted lattice planes (111), (220), and (311) in good agreement with cubic geometry. Furthermore, the addition of dopants was discovered to enhance the thermal stability of the fabricated material. In addition, QDs exhibited efficacy in the breakdown of PAHs. The analysis of their fragmentation suggests that the primary mechanism for PAHs degradation is the phthalic acid pathway.


Assuntos
Poluentes Ambientais , Índio , Nitrilas , Fenantrenos , Fosfinas , Piretrinas , Pontos Quânticos , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Vermelho Congo , Violeta Genciana , Pirenos
2.
RSC Adv ; 14(7): 4844-4852, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38323019

RESUMO

The structural, electronic and optical properties of silicene and its derivatives are investigated in the present work by employing density functional theory (DFT). The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) is used as the exchange-correlation potential. Our results provide helpful insight for tailoring the band gap of silicene via functionalization of chlorine and fluorine. First, relaxation of all the materials is performed to obtain the appropriate structural parameters. Cl-Si showed the highest lattice parameter 4.31 Å value, while it also possesses the highest buckling of 0.73 Å among all the derivatives of silicene. We also study the electronic charge density, charge difference density and electrostatic potential, to check the bonding characteristics and charge transfer between Si-halides. The electronic properties, band structures and density of states (DOS) of all the materials are calculated using the PBE-GGA as well as the modified Becke-Johnson (mBJ) on PBE-GGA. Pristine silicene is found to have a negligibly small band gap but with the adsorption of chlorine and fluorine atoms, its band gap can be opened. The band gap of Cl-Si and F-Si is calculated to be 1.7 eV and 0.6 eV, respectively, while Cl-F-Si has a band gap of 1.1 eV. Moreover, the optical properties of silicene and its derivatives are explored, which includes dielectric constants ε1 and ε2, refractive indices n, extinction coefficients k, optical conductivity σ and absorption coefficients I. The calculated binding energies and phonon band structures confirm the stability of Cl-Si, Cl-F-Si, and F-Si. We also calculated the photocatalytic properties which show silicine has a good response to reduction, and the other materials to oxidation. A comparison of our current work to recent work in which graphene was functionalized with halides, is also presented and we observe that silicene is a much better alternative for graphene in terms of semiconductors and photovoltaics applications.

3.
Toxics ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393205

RESUMO

Land use has a great impact on soil dynamics. The soils of various land use systems in Central Karakoram have been under immense pressure in the recent past due to certain anthropogenic activities such as land use practices and land use cover changes. These influences have an impact on the spatial distribution of metallic elements (MEs) in the soils of various land uses. Herein, we investigated the occurrence of the MEs, copper (Cu), zinc (Zn), and nickel (Ni), in soils of various land uses such as the permafrost, pasture, forest, and agricultural lands of the Central Karakorum region. The MEs were extracted in exchangeable, adsorbed, organically bound, carbonated, precipitated, and residual forms. The concentrations of MEs showed a significant dependence on the extraction method used, and the extraction trend followed the order of EDTA > HNO3 > KNO3 > NaOH > H2O. Zn showed the highest concentration compared to Ni and Cu in all extractions, whereas the land uses' ME concentration followed the order of agricultural land > permafrost > forest > pasturelands. The highest values of total Zn, Ni, and Cu were 712 ± 01 mg/kg, 656 ± 02 mg/kg, and 163 ± 02 mg/kg, respectively, in agricultural soil. The ME concentration showed significant variations between different land uses, and the highest concentration was noted in agricultural soil. Zn was found to be a dominant ME compared to Ni and Cu. We believe this effort will provide opportunities for scholars to investigate MEs around the globe.

4.
Sci Total Environ ; 918: 170269, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38266733

RESUMO

In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnOx)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnOx-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnOx-based adsorbent materials to As removal.

5.
Front Public Health ; 11: 1277182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026331

RESUMO

In recent decades, heavy metals (HMs) have emerged as a global health concern. Unfortunately, in Pakistan, there is a general lack of awareness regarding the potential health risks associated with HMs pollution among automobile workers. Herein, we investigated the concentration of heavy metals such as lead (Pb), cadmium (Cd), and chromium (Cr) among automobile workers who were occupationally exposed in Mingora City, Khyber Pakhtunkhwa, Pakistan. Three different automobile groups, i.e., battery recyclers, spray painters, and mechanics were studied in detail. A total of 40 blood samples were collected from automobile workers groups while 10 blood samples were collected as control individuals from different locations in the study area. We investigated heavy metals concentration with a standard method using an atomic absorption spectrometer AAS (PerkinElmer Analyst 700, United States). Based on our findings, the battery recycling group displayed the most elevated Pb levels (5.45 ± 2.11 µg/dL), exceeding those of both the spray painters' group (5.12 ± 1.98 µg/dL) and the mechanics' group (3.79 ± 2.21 µg/dL). This can be attributed to their higher exposure to Pb pollution resulting from the deterioration, dismantling, grinding, or crushing of old batteries. In the context of chromium (Cr) exposure, a similar trend was observed among the battery recycling group, as well as the spray painters and mechanics groups. However, in the case of cadmium (Cd), the mechanics' group exhibited the highest level of exposure (4.45 ± 0.65 µg/dL), surpassing the battery recycling group (1.17 ± 0.45 µg/dL) and the spray painters' group (1.35 ± 0.69 µg/dL), which was attributed to their greater exposure to welding fumes and other activities in their workplace. We believe that our findings will encourage regulatory measures to improve the health of automobile workers. However, further work is needed to determine various health-related issues associated with heavy metal exposure among automobile workers.


Assuntos
Metais Pesados , Exposição Ocupacional , Humanos , Cádmio , Chumbo , Exposição Ocupacional/análise , Metais Pesados/análise , Cromo/análise
6.
Environ Pollut ; 335: 122323, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544400

RESUMO

Groundwater is the primary source of water that occurs below the earth's surface. However, the advancement in technology and the increasing population, which lead to the discharge of contaminants such as microplastics (MPs), have an adverse impact on the quality of groundwater. MPs are ubiquitous pollutants that are widely found throughout the world. The maximum abundance of MPs is 4 items/L and 15.2 items/L in groundwater at the specific location of China and USA. Various factors can affect the migration of MPs from soil to groundwater. The occurrence of MPs in water causes serious health issues. Therefore, taking appropriate strategies to control MP contamination in groundwater is urgent and important. This review summarizes the current literature on the migration process of MPs from soil to groundwater along with possible methods for the remediation of MP-polluted groundwater. The main objective of the review is to summarize the technical parameters, process, mechanism, and characteristics of various remediation methods and to analyze strategies for controlling MP pollution in groundwater, providing a reference for future research. Possible control strategies for MP pollution in groundwater include two aspects: i) prevention of MPs from entering groundwater; ii) remediation of polluted groundwater with MPs (ectopic remediation and in-situ remediation). Formulating legislative measures, strengthening public awareness and producing more environment-friendly alternatives can be helpful to reduce the production of MPs from the source. Manage plastic waste reasonably is also a good strategy and the most important part of the management is recycling. The shortcomings of the current study and the direction of future research are also highlighted in the review.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Microplásticos , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água , Solo
7.
Environ Geochem Health ; 45(8): 5915-5925, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37184720

RESUMO

Heavy metals (HMs) are extensively found in occupationally exposed miners and industrial workers, which may cause serious health-related problems to the large workforce. In order to evaluate the impact of these toxic pollutants, we have investigated the effect of cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) concentration on exposed workers of mining, and woolen textile mill and compared the findings with unexposed individuals. From each category like exposed workers (mining, and woolen mill textile site) and unexposed individuals, 50 blood samples were taken. The occurrence of HMs in a sample was investigated through atomic absorption spectrometry while the oxidative stress marker malondialdehyde (MDA) and antioxidant enzyme statuses such as superoxide dismutase (SOD) and catalase (CAT) were analyzed in exposed and control samples. The results showed significant (p < 0.05) variation in Cd, Cr, Cu, and Pb levels in exposed and control samples. The concentration of Cd in the blood of WMWs, KMWs, and control group was 5.75, 3.89, and 0.42 µg/dL, respectively. On the other hand, the concentration of Pb in the blood of WMWs, MWs, and control was 32.34, 24.39, and 0.39 µg/dL while the concentrations of Cr and Cu in the blood of WMWs, MWs, and control group were 11.61 and 104.14 µg/dL, 4.21 and 113.21 µg/dL, 0.32 and 65.53 µg/dL, respectively. An increase in MDA was recorded in the exposed workers' group as compared to control subjects, whereas SOD and CAT activities decreased. Meanwhile, MDA was significantly and positively (p < 0.01) correlated with HMs, while negative significant correlations were found among HMs with SOD and CAT.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Cádmio/análise , Paquistão , Chumbo/toxicidade , Chumbo/análise , Metais Pesados/análise , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Cromo/toxicidade , Cromo/análise , Antioxidantes/metabolismo
8.
J Colloid Interface Sci ; 640: 456-471, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870221

RESUMO

The occurrence of micropollutants in aquatic media raises great concern because of their biological toxicity and persistence. Herein, visible-light-driven photocatalyst titanium dioxide/graphitic carbon nitride/triiron tetraoxide (TiO2-x/g-C3N4/Fe3O4, TCNF) with oxygen vacancies (Ov) was prepared via a facile hydrothermal-calcination method. The complementary visible-light co-absorption among semiconductors enhances light-harvesting efficiency. The built-in electric field formed during Fermi level alignment drives photoinduced electron transfer to improve charge separation across the interfaces. The increased light-harvesting and favorable energy band bending significantly enhance the photocatalytic performance. Therefore, TCNF-5-500/persulfate system could effectively photodegrade bis-phenol A within 20 min under visible-light irradiation. Moreover, the superior durability, non-selective oxidation, adaptability, and eco-friendliness of the system were confirmed by different reaction conditions and biotoxicity assessment. Furthermore, the photodegradation reaction mechanism was presented according to the major reactive oxygen species produced in the system. Thus, this study constructed a dual step-scheme heterojunction by tuning visible-light absorption and energy band structure to increase the charge transfer efficiency and photogenerated carrier lifetime, which has great potential for environmental remediation using visible photocatalysis.

9.
Sci Total Environ ; 858(Pt 3): 160108, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370786

RESUMO

Plastic waste has gained remarkable research attention due to its accumulation, associated environmental issues, and impact on living organisms. In order to overcome this challenge, there is an urgent need for its removal from the environment. Under this menace, finding appropriate treatment methods like biodegradation instead of typical treatment methods is of supreme importance. However, there is a limited review on bio-decomposition of plastics, existing microbial species, their degradation efficacy, and mechanism. From this point of view, this study focused on a brief overview of biodegradation such as influencing factors on biodegradation, existing species for macro- and micro-plastics, and present research gap. Degradation percentage, limitations of existing species, and future recommendations are proposed. Microbial species such as bacteria, algae, and fungi have the ability to decompose plastics but they are unable to completely mineralize the plastics. Meanwhile, there is limited knowledge about the involved enzymes in plastics degradation, especially in the case of algae. Bio-decomposition of plastics requires more stringent conditions which are usually feasible for field application. This work will be a reference for new researchers to use this effective strategy for plastic pollution removal.


Assuntos
Microplásticos , Plásticos
10.
Environ Sci Pollut Res Int ; 30(13): 37208-37218, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571694

RESUMO

Iodine is an essential microelement for humans and its deficiency leads to iodine deficiency disorder (IDD) which is a common problem faced by people in hilly areas. Biofortification of iodine is an option to overcome the IDD problem. Herein, we investigated the iodine uptake and accumulation in the edible portion of vegetables such as Brassica napus (BNP) and Brassica pekinensis (BPK) which were grown on two different soils such as sandy soil (SS) and silty loam soil (SLS) with different concentrations of iodine application (used in sodium iodide form) such as 0 ppm, 50 ppm, and 100 ppm. The concentration of iodine was determined by the oxidation of iodide, and nutrients were examined by double acid digestion. Different concentrations of iodine were noticed in silty loam and sandy soils, roots, and shoots of BNP and BPK, while the concentration follows the order: soils > roots > shoots. Iodine concentrations in the roots of BNP and BPK ranged from 46 to 223.7 µg/g which shows a strong correlation with other soil nutrients. Moreover, a large amount of iodine was lost due to the leaching. It is concluded that the biofortification of iodine increases its concentration in Brassica species. This work provides a reference for the iodine biofortification in plant species which will be helpful to control IDD.


Assuntos
Brassica napus , Brassica , Iodo , Poluentes do Solo , Humanos , Solo , Biofortificação , Suplementos Nutricionais
11.
ACS Omega ; 7(45): 40911-40919, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406554

RESUMO

Herein, we report a solution-processable memristive device based on bismuth vanadate (BiVO4) and titanium dioxide (TiO2) with gallium-based eutectic gallium-indium (EGaIn) and gallium-indium-tin alloy (GaInSn) liquid metal as the top electrode. Scanning electron microscopy (SEM) shows the formation of a nonporous structure of BiVO4 and TiO2 for efficient resistive switching. Additionally, the gallium-based liquid metal (GLM)-contacted memristors exhibit stable memristor behavior over a wide temperature range from -10 to +90 °C. Gallium atoms in the liquid metal play an important role in the conductive filament formation as well as the device's operation stability as elucidated by I-V characteristics. The synaptic behavior of the GLM-memristors was characterized, with excellent long-term potentiation (LTP) and long-term depression (LTD) linearity. Using the performance of our device in a multilayer perceptron (MLP) network, a ∼90% accuracy in the handwriting recognition of modified national institute of standards and technology database (MNIST) was achieved. Our findings pave a path for solution-processed/GLM-based memristors which can be used in neuromorphic applications on flexible substrates in a harsh environment.

12.
Ecotoxicol Environ Saf ; 221: 112426, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166940

RESUMO

Lead (Pb) and cadmium (Cd) are considered as a typical heavy metals in aqueous solution, which may pose adverse health effects on human beings. For the removal of these two pollutants, magnesium oxide (MgO) was successfully immobilized onto eucalyptus biochar (BC) matrix via simple and cost-effective pyrolysis process of MgCl2-pretreated eucalyptus biomass under high temperature (500 °C). Synthesized MgO nanoparticles-biochar composites (MBC) exhibited superior removal performance for target pollutants, and achieve 99.9% removal efficiency for Pb(II) and Cd(II) at optimum conditions (0.02 g, pH in range of 4-7, and reaction time 120, 240 min). Furthermore, the maximum theoretical adsorbing amount of MBC was 829.11 mg/g for Pb(II) and 515.17 mg/g for Cd(II). Pseudo-second-order model and Langmuir models were well-determined for isotherm and adsorption kinetics. FTIR, XRD, and XPS analysis revealed that precipitation and ion exchange was of great importance for the removal of contaminants. Besides, cation-π interaction and complexation from the carbon-containing functional groups should not be neglected. Considering the advantage of low-cost, facile preparation, and brilliant adsorption capacity, it is anticipated that MBC has a promising prospect for the broad application in Pb(II)/Cd(II)-containing wastewater treatment.


Assuntos
Cádmio/química , Carvão Vegetal/química , Eucalyptus , Chumbo/química , Óxido de Magnésio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Soluções
13.
J Hazard Mater ; 418: 126207, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102353

RESUMO

Photocatalysis has been regarded as a sustainable strategy for wastewaters remediation, and sulfite addition could significantly accelerate the photocatalytic performances. However, the related mechanisms are still not well understood. Here, we for the first time found that plasmonic Bi and oxygen vacancies were in-operando generated on BiOX (X = Cl, Br, I) in the presence of sulfite under light irradiation. The oxidative degradation rate constants of 4-nitrophenol, bisphenol A, and phenol were improved by about 11.5, 4.7, and 12.2 times on BiOBr and 9.1, 1.6, and 3.1 times on BiOCl with addition of 5 mM sulfite, while the photocatalytic reduction rate of 4-nitrophenol to 4-aminophenol was promoted by approximate 31.7 times on BiOI. The results indicated that sulfite could improve the photooxidation ability of BiOBr and BiOCl and the photoreduction performance of BiOI, resulted from the improved light absorption and separation of photogenerated charge carriers. This work can provide exploratory platforms for understanding and maximizing the sulfite-assisted BiOX photocatalysis.

14.
iScience ; 23(7): 101326, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32659724

RESUMO

Recently, the environmental impacts of microplastics have received extensive attention owing to their accumulation in the environment. However, developing efficient technology for the control and purification of microplastics is still a big challenge. Herein, we investigated the photocatalytic degradation of typical microplastics such as polystyrene (PS) microspheres and polyethylene (PE) over TiO2 nanoparticle films under UV light irradiation. TiO2 nanoparticle film made with Triton X-100 showed complete mineralization (98.40%) of 400-nm PS in 12 h, while degradation for varying sizes of PS was also studied. PE degradation experiment presented a high photodegradation rate after 36 h. CO2 was found as the main end product. The degradation mechanism and intermediates were studied by in situ DRIFTS and HPPI-TOFMS, showing the generation of hydroxyl, carbonyl, and carbon-hydrogen groups during the photodegradation of PS. This study provides a green and cost-efficient strategy for the control of microplastics contamination in the environment.

15.
J Hazard Mater ; 398: 123007, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512461

RESUMO

Sulfite is recently found to be promising in enhancing photocatalytic pollutants degradation, which is a byproduct from flue gas desulfuration process. Herein, 4-chlorophenol (4-CP) photodegradation was systematically investigated in a sulfite mediated system with g-C3N4 as photocatalyst. The degradation efficacy was improved by about 3 times with addition of 25 mM Na2SO3. The dominant responsible reactive oxygen species for chlorophenols remediation in the presence of sulfite included O2·-, SO3·-, and SO4·- as confirmed by radical quenching experiments and electron spin resonances technology. In-situ DRIFTs results indicated the improved cleavage of CCl and CH bonds with the simultaneous formation of CO and CC bonds when bisulfite was added. Degradation intermediates such as 4-chlorocatechol, hydroquinone, and muconic acid were detected by HPLC-MS. Furthermore, the photodegradation mechanisms of 4-CP were tentatively discussed . Other chlorophenols (phenol, 2-CP, 2,4-DCP, and their mixture) were also efficiently removed in the system, suggesting that sulfite could be universally applied in photocatalytic wastewater purification.

16.
Sci Total Environ ; 734: 139415, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464390

RESUMO

The rapid sulfate formation is a crucial factor determining the explosive growth of fine particles and the frequent occurrence of severe haze events in China. Recent field observations also show that brown carbon is one of the most critical components in aerosol particles sampled during haze episodes. To this day, there is limited knowledge that accesses the role of brown carbon in atmospheric chemistry. In fact, these carbonaceous particulate matters, mainly derived from forest fires, biomass burning, and biogenic release, can act as photosensitizers and produce varieties of active intermediates to alter oxidation capacity. Experimental results in this work provide evidence that hydroxyl radical (∙OH) stems from brown carbon proxies fulvic acid /humic acid (FA/HA) upon irradiation, leading to rapid SO2 oxidation on brown carbon particles in the atmosphere. Further correlation analyses for sulfate formation and chromophore properties of 12 model compounds demonstrate that brown carbon particles with higher aromaticity and E2/E3 (the ratio of absorbance at 254 nm to that at 365 nm) would facilitate ∙OH production and SO2 photo-oxidation. Uptake coefficient measurements and sulfate production rate estimation indicate that brown carbon could gain importance in atmospheric SO2 oxidation. A better understanding of SO2 uptake kinetics on brown carbon surfaces favors in defining new regulations to improve air quality and reduce the harmful effects of haze events on resident health and the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...